domingo, 7 de abril de 2019




Uma reação química é uma transformação da matéria na qual ocorrem mudanças qualitativas na composição química de uma ou mais substâncias reagentes, resultando em um ou mais produtos.[1][2][3] Envolve mudanças relacionadas à mudança nas conectividades entre os átomos ou íons, na geometria das moléculas das espécies reagentes ou ainda na interconversão entre dois tipos de isômeros. Para iniciar a reação, geralmente é necessário energia na forma de calor.
Resumidamente pode-se afirmar que uma reação química é uma transformação da matéria em que pelo menos uma ligação química é criada ou desfeita.

Características[editar | editar código-fonte]

Um aspecto importante sobre uma reação química é a conservação da massa e o número de espécies químicas microscópicas(átomos e íons) presentes antes e depois da ocorrência da reação. Essas leis de conservação se manifestam microscopicamente sob a forma das leis de Lavoisier, do mestre Proust e de Dalton. De fato, essas leis, no modelo atômico de Dalton, se justificariam pelas leis de conservação acima explicitadas e pelo fato de os átomos apresentarem valências bem definidas. Ao conjunto das características e relações quantitativas dos números de espécies químicas presentes numa reação dá-se o nome de estequiometria.
Deve-se salientar que uma ligação química ocorre devido a interações entre as nuvens eletrônicas dos átomos, e que então a reação química apenas envolve mudanças nas eletrosferas. No caso de ocorrer mudanças nos núcleos atômicos teremos uma reação nuclear. Ao passo que nas reações químicas a quantidade e os tipos de átomos sejam os mesmos nos reagentes e produtos, na reação nuclear, as partículas subatômicas são liberadas, o que causa redução de sua massa, sendo este um fato relacionado à existência de elementos isóbarosisótonos e isótopos entre si.
Um exemplo de uma reação química é (ambos os regentes em solução aquosa)
NaCl + AgNO3  NaNO3 + AgCl
x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D
Nesta reação química, ao passo que o NaNO3 permanece em solução, formou-se uma ligação entre a prata (Ag) e o cloro (Cl) o que resultou em um produto sólido de cloreto de prata (AgCl), pode-se então dizer que houve uma reação química.
Balanceamento de equações químicas
Em uma reação química os elementos e o número de átomos de cada elemento têm de ser os mesmos antes e depois da reação (equação balanceada). Durante a reação química não ocorre destruição ou criação de novos átomos, o que muda é a forma com que os átomos estão organizados, podendo haver transferência de elétrons de um átomo para outro. Por esse motivo sempre é preciso verificar se as equações químicas estão balanceadas.
Para realizar o balanceamento de uma equação é necessário adicionar coeficientes (números inteiros que colocados antes de cada substância, tornam o número de átomos iguais em cada membro da equação). Os coeficientes indicam apenas a proporção entre os átomos, não alterando os índices (números menores que aparecem depois do elemento) das formulas, pois isso alteraria a natureza química da substância.
                             H2(g) + O2(g)  → H2O(l) (equação não balanceada)
x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D
O primeiro membro da equação apresenta dois átomos de hidrogênio e dois de oxigênio. No segundo membro o hidrogênio também apresenta dois átomos, porém o oxigênio apresenta apenas um, ou seja, a equação está desbalanceada.
2H2(g) + O2(g)  → 2H2O(l) (equação balanceada)
x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D
            Após o balanceamento, são observados quatro átomos de hidrogênio no primeiro e no segundo membros da equação. E em relação ao oxigênio, são observados dois átomos no primeiro e no segundo membros.
As letras entre parênteses presentes nas equações representam o estado físico de cada elemento. Sendo assim, (l) liquido; (s) sólido; (g) gás; (aq) substância em solução aquosa; (v) vapor.
Em equações mais complicadas, devemos começar o balanceamento sempre pelo elemento que aparece apenas uma vez em cada membro da equação, por exemplo:
CH4 + O2 → CO2 + H2(equação desbalanceada)
x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D
Neste caso tanto o carbono quanto o hidrogênio aparecem apenas uma vez em cada membro da equação, portanto o balanceamento começa por eles. Depois que esses forem balanceados, deve-se conferir se o número dos outros átomos está correto.
CH4(g) + 2O2(g) → CO2(g)+ 2H2O(v) (equação balanceada)
x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D
No caso de todos os elementos aparecerem apenas uma vez em cada membro da equação, deve-se começar o balanceamento pelo elemento com maior índice. Por exemplo:
Fe + O2 → Fe2O3 (equação desbalanceada)
x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D
Neste exemplo o balanceamento se inicia pelo oxigênio, pois ele apresenta o maior índice (3). Depois deve-se conferir se o número de átomos de ferro está correto.
4Fe(s) + 3O2(g) → 2Fe2O3(s) (equação balanceada)
x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D

Causas das reações químicas[editar | editar código-fonte]

O acontecimento de reações deve-se a fatores termodinâmicos e cinéticos.

Termodinâmico[editar | editar código-fonte]

Quanto à termodinâmica, o acontecimento de uma reação é favorecido com o aumento da entropia e a diminuição da energia. Essas duas grandezas se cooperam nesse caso de acordo com a seguinte equação:
ΔG = ΔH — T · ΔS (para sistemas a pressão constante)
x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D
ΔA = ΔU — T · ΔS (para sistemas a volume constante)
x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D
Onde T é a temperatura em kelvin, ΔH é a variação da entalpia (que é igual a energia absorvida ou liberada em pressão constante) entre os reagentes e os produtos, ΔU é variação da energia interna (que é igual a energia absorvida ou liberada a volume constante) entre eles, ΔS é a variação da entropia entre os mesmos, ΔG é uma grandeza chamada de energia livre de Gibbs e ΔA é uma grandeza chamada de energia de Helmholtz.
Se ΔA e ΔG forem maiores que zero em dadas condições, a reação é dita como não espontânea nessas condições, e ela ocorre ou não ocorre em escala apreciável. Na situação de ΔA e ΔG iguais a zero teremos um equilíbrio químico.
Caso ΔA e ΔG sejam menores que zero em dadas condições, dizemos que a reação é termodinamicamente favorável nestas condições, ou seja, ela é espontânea. Contudo é importante notar que uma reação ser espontânea não necessariamente significa que ela ocorra rapidamente.

Cinética[editar | editar código-fonte]

Nesse ponto, entram os fatores cinéticos. Para que uma reação ocorra é necessário que antes, os reagentes superem uma certa barreira de energia, e quanto maior for essa barreira mais difícil será a reação ocorrer e mais lenta ela será. Dessa forma, uma reação termodinamicamente favorável pode ocorrer de forma extremamente lenta ou acabar nem sendo observada em um intervalo de tempo consideravelmente grande; então se diz que a reação é cineticamente desfavorável. Um bom exemplo disso é o carvão e o diamante, que são duas formas diferentes de carbono (alótropos); em condições normais a transformação de diamante a carvão é termodinamicamente favorável porém cineticamente desfavorável, o que faz com que fossem necessários centenas ou milhares de anos para se observar alguma mudança em um diamante. É preciso entender que uma reação para ser cineticamente viável, necessita primeiramente ser termodinamicamente possível.

Tipos de reações químicas[editar | editar código-fonte]

Tradicionalmente, as reações químicas podem ser classificadas de acordo com o número de reagentes e produtos em cada membro da equação química que representa a reação:
  • reações de síntese, composição ou adição ;
  • reações de análise ou decomposição ;
  • reações de simples troca ou deslocamento (;
  • reações de dupla troca .
  • x
  • Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
Outra classificação categoriza as reações em dois tipos:
Algumas reações de síntese, algumas de análise, todas de simples troca e nenhuma de dupla troca são reações de oxirredução
Classes de reações por molécula:
  1. Reações unimoleculares, em que um reagente sofre ruptura e/ou formação de ligação para produzir diferentes produtos;
  2. Reações bimoleculares, em que dois reagentes colidem e depois sofrem ruptura e/ou formação para produzir diferentes produtos;
  3. Reações de associação termolecular, em que dois reagentes colidem para formar um complexo molecular com uma nova ligação química entre os dois reagentes e uma terceira molécula, remove uma parte da energia cinética interna dessa molécula para estabilizá-la.
  4. Reação quimicamente termolecular, uma reação mediada por um complexo de colisão efêmera (HO2) formado a partir da colisão de duas moléculas (HO2) que então reage após colidir com uma terceira molécula (H)[4].
Um tipo de reação que não encontra paralelo nas classificações acima é a chamada reação de isomerização.
Ainda existem uma série de reações que são estudadas em Química Orgânica, ou seja, sub-classes de reações, tais como : Reações de Halogenação, Reações de Hidrogenação, Reações de Substituição Nucleofílica etc.










observação: é usado textos da wikipédia para mostrar as modificações com as variáveis do sistema decadimensional e categorial Graceli.



teoria da relatividade categorial Graceli

ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.


Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D











NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA  [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .


Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.


E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



Sobre padrões de entropia.

Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


Princípio tempo instabilidade de Graceli.

Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


as dimensões categorias podem ser divididas em cinco formas diversificadas.

tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



paradox of the system of ten dimensions and categories of Graceli.



a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



that is, categories ground the variables of phenomena and their interactions and transformations.



and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



as well as transitions of energies, phenomena, categories and dimensions.

paradoxo do sistema de dez dimensões e categorias de Graceli.

um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

como também transições de energias, fenômenos, categorias e dimensões.







 = entropia reversível

postulado categorial e decadimensional Graceli.

TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
matriz categorial Graceli.

T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.




Sistema decadimensional Graceli.

1]Espaço cósmico.
2]Tempo cósmico  e quântico.
3]Estruturas.[isótopos, estrutura eletrônica, elementos químicos, amorfos e cristalinos, e, outros.
4]Energias.
5]Fenômenos.
6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


Matriz categorial de Graceli.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.

EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

h e = quantum index and speed of light.

[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


EPG = GRACELI POTENTIAL STATUS.

[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].